Iterative Nonlocal Total Variation Regularization Method for Image Restoration

نویسندگان

  • Huanyu Xu
  • Quansen Sun
  • Nan Luo
  • Guo Cao
  • Deshen Xia
چکیده

In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Debiasing Restoration Algorithms: Applications to Total-Variation and Nonlocal-Means

Bias in image restoration algorithms can hamper further analysis, typically when the intensities have a physical meaning of interest, e.g., in medical imaging. We propose to suppress a part of the bias – the method bias – while leaving unchanged the other unavoidable part – the model bias. Our debiasing technique can be used for any locally affine estimator including l1 regularization, anisotro...

متن کامل

Combining Total Variation and Nonlocal Means Regularization for Edge Preserving Image Deconvolution

We propose a new edge preserving image deconvolution model by combining total variation and nonlocal means regularization. Natural images exhibit an high degree of redundancy. Using this redundancy, the nonlocal means regularization strategy is a good technique for detail preserving image restoration. In order to further improve the visual quality of the nonlocal means based algorithm, total va...

متن کامل

A hybrid GMRES and TV-norm based method for image restoration

Total variation-penalized Tikhonov regularization is a popular method for the restoration of images that have been degraded by noise and blur. The method is particularly effective, when the desired noiseand blur-free image has edges between smooth surfaces. The method, however, is computationally expensive. We describe a hybrid regularization method that combines a few steps of the GMRES iterat...

متن کامل

An Iterative Regularization Method for Total Variation-Based Image Restoration

We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods, by using total variation regularization. We obtain rigorous convergence results, and effective stopping criteria for the gener...

متن کامل

Weighted Schatten $p$-Norm Minimization for Image Denoising with Local and Nonlocal Regularization

This paper presents a patch-wise low-rank based image denoising method with constrained variational model involving local and nonlocal regularization. On one hand, recent patch-wise methods can be represented as a low-rank matrix approximation problem whose convex relaxation usually depends on nuclear norm minimization (NNM). Here, we extend the NNM to the nonconvex schatten p-norm minimization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013